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Orthogonally, we introduced the concept of combinatorial  
cellular indexing10—a method that eschews microfluidic manipu-
lation and instead tags DNA within intact nuclei with successive 
(combinatorial) rounds of nucleic acid barcodes—to measure 
chromatin accessibility in thousands of single cells without physi-
cally isolating each single cell (single-cell combinatorial indexed 
ATAC-seq, or sciATAC-seq). Such throughput-boosting strategies 
have yet to be successfully adapted for single-cell chromosome 
conformation analysis.

To address this methodological gap, we have developed a high-
throughput single-cell Hi-C protocol, termed single-cell combina-
torial indexed Hi-C, or sciHi-C (Fig. 1a), based on the concept of 
combinatorial indexing and also building on recent improvements 
to the Hi-C protocol14,15 (see Online Methods). A population  
of 5 to 10 million cells is fixed, lysed to generate nuclei, and 
restriction digested in situ with the enzyme DpnII. Nuclei are then 
distributed to 96 wells, wherein the first barcode is introduced 
through ligation of barcoded biotinylated double-stranded bridge 
adaptors. Intact nuclei are then pooled and subjected to proxim-
ity ligation all together, followed by dilution and redistribution 
to a second 96-well plate. Importantly, this dilution is carried out 
such that each well in this second plate contains at most 25 nuclei. 
Following lysis, a second barcode is introduced through ligation 
of barcoded Y-adaptors.

As the number of barcode combinations (96 × 96) exceeds the 
number of nuclei (96 × 25), the vast majority of single nuclei 
are tagged by a unique combination of barcodes. All material is 
once again pooled, and biotinylated junctions are purified with 
streptavidin beads, restriction digested, and further processed to 
Illumina sequencing libraries. Sequencing these molecules with 
relatively long paired-end reads (i.e., 2 × 250 base pairs (bp)) 
allows one to identify not only the genome-derived fragments 
of conventional Hi-C, but also external and internal barcodes 
(each combination of which is hereafter referred to as a ‘cellular 
index’) which enable decomposition of the Hi-C data into single-
cell contact probability maps (Fig. 1b). Like sciATAC-seq10, this 
protocol can process thousands of cells per experiment without 
requiring the physical isolation of each cell.

As a proof of concept, we applied sciHi-C to synthetic mix-
tures of cell lines derived from mouse (primary mouse embryonic 
fibroblasts (MEFs), and the ‘Patski’ embryonic fibroblast line) and 
human cells (HeLa S3, the HAP1 cell line, K562, and GM12878; 
all five experiments and sequenced libraries are summarized in 
Supplementary Table 1, although we focus on ML1 and ML2 
biological replicates in the text). All experiments were carried out 
such that subsets of cell types received specific barcodes during 
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Our understanding of genome architecture has progressed through 
the successive development of new technologies1. Advances in 
microscopy revealed the presence of ‘chromosome territories’, 
nuclear regions that preferentially self associate2. The advent of 
chromosome conformation capture (3C) and its derivatives3 has 
resulted in a proliferation of data measuring genome architecture 
and its relation to other aspects of nuclear biology.

3C assays rely on the concept of proximity ligation, a technique 
that has been used to measure local protein–protein4, RNA–RNA5, 
and DNA–DNA interactions6. By coupling an ‘all-vs-all’ 3C assay 
with massively parallel sequencing techniques7,8 (e.g., Hi-C), one 
can query the relative contact probabilities of DNA genome wide. 
However, contact probabilities generated by these assays represent 
ensemble averages of the respective conformations of the millions 
of nuclei used as input, and scalable techniques characterizing 
the variance underlying these population averages remain largely 
underdeveloped. A pioneering study in 2013 demonstrated proof 
of concept that Hi-C could be performed on single isolated mouse 
nuclei but relied on the physical separation and processing of 
single murine cells in independent reaction volumes, with con-
sequent low throughput9.

The repertoire of high-throughput single-cell techniques for 
other biochemical assays has expanded rapidly as of late10–13. 
Single-cell RNA-seq (scRNA-seq) was recently paired with drop-
let-based microfluidics to markedly increase its throughput11,12.  
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the first round of barcoding (e.g., in ML1 and ML2, each well 
during the first round of barcoding contained either HeLa S3 + 
Patski cells or HAP1 + MEF cells; see Online Methods).

Before deconvolving the resulting data to single cells, we exam-
ined the overall distribution of ligation junctions (i.e., contacts). 
Encouragingly, there were very few contacts between mouse 
and human cells (ML1, 0.006%; ML2, 0.008%), demonstrating 
minimal crosstalk between cellular indices and indicating that 
nuclei remain intact through all ligation steps (confirmed through 
phase-contrast microscopy; Supplementary Fig. 1). We also 
examined the cis:trans ratio, defined here as the ratio of long-range  
(i.e., >20 kb) intrachromosomal contacts to interchromosomal 
contacts (Fig. 1c), and found it to be on par with expectation  
for high-quality Hi-C data sets (ML1, 4.41; ML2, 4.38).

We next split the Hi-C data to characterize the number of 
unique read pairs associated with each cellular index, the vast 
majority of which should correspond to single cells. When exam-
ining a histogram of unique index occurrences as a function of 
read depth, we noted a bimodal distribution reminiscent of pat-
terns seen in sciATAC-seq data sets10, where low-coverage indices 
likely represent ‘noise’ consequent to tags from free DNA in solu-
tion (Supplementary Fig. 2). After discarding these, we inferred 

1,081 cellular indices in ML1, with a median of 9,274 unique read 
pairs per index (ML2, 841 cellular indices; median of 8,335 unique 
read pairs per index). Importantly, we also observed minimal 
barcode bias across replicate experiments (Supplementary Fig. 3)  
as well as similar median cis:trans ratios per cell (ML1, 4.43 with 
median absolute deviation (MAD) of 1.66; ML2, 4.34 with MAD 
of 1.66) (Fig. 1d and Supplementary Fig. 4).

The only previously published study of single-cell Hi-C data 
suggests that high single-cell cis:trans ratios are a hallmark of 
high-quality single-cell data9. The high cis:trans ratios that  
we observed are comparable to those of the ten single-cell maps 
generated in that study, which reported a median value of 6.26 
(MAD = 0.74), calculated as the ratio of all intrachromosomal 
contacts to interchromosomal contacts (i.e., with no cutoff for 
minimal intrachromosomal distance). Reanalyzing our own 
data using this more liberal criterion yielded similar ratios of 
6.17 (ML1; MAD = 1.99) and 5.96 (ML2; MAD = 1.94). Of note,  
our ratios are calculated over 1,922 cellular indices (ML1 and  
ML2 combined), 857 of which have more than 10,000 unique 
contacts, compared with the ten previously reported single 
cells—each with at least 10,000 unique contacts. This comparison  
illustrates the greater scalability of combinatorial methods  
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figure 1 | sciHi-C integrates in situ Hi-C with combinatorial cellular indexing to generate signal-rich 
bulk Hi-C maps that can be decomposed into single-cell Hi-C maps. (a) sciHi-C follows the traditional 
paradigm of fixation, digestion, and religation shared by all Hi-C assays (steps 1–4), but it uses a 
biotinylated bridge adaptor to incorporate a first round of barcodes in bulk before proximity ligation 
(step 3) and custom-barcoded Illumina Y-adaptors (step 5) to incorporate a second round of barcodes  
in diluted, redistributed, and lysed nuclei (one barcode per ~25 nuclei) before affinity purification  
and library amplification (steps 5 and 6). The vast majority of resulting molecules will harbor one  
unique pair of barcodes per single cell. RE, restriction enzyme. (b) Bulk data generated by this protocol 
can be decomposed to single-cell Hi-C maps. (c) sciHi-C libraries demonstrate a high cis:trans ratio, 
measured as the ratio of intrachromosomal contacts >20 kb apart to interchromosomal contacts.  
(d) The high cis:trans ratio observed in bulk data is maintained after libraries are all decomposed  
to ~1,800 cellular indices (each with ≥1,000 unique reads).
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compared with that of methods relying on the physical isolation 
and serial processing of each single cell.

We designed our experiments to facilitate validation of the single- 
cell origin of each cellular index. Uniquely tagged cells should 
be associated with species-specific cellular indices in mixture 
experiments, with a collision rate broadly defined by a formula-
tion of the ‘birthday problem’10. Consistent with the expected 
collision rate, we observed that 4.53% of all ML1 cellular indices 
(4.40% in ML2) were ‘collisions’ (i.e., they had less than 95% of 
reads mapping to either the mouse or human genome) (Fig. 2a,b). 
For further analyses we filtered out any cellular indices failing 
this criterion, while accepting that we remain blind to ‘within 
species’ collisions, which likely exist at a similar fraction to that 
of interspecies collisions. We also filtered out indices where the 
associated cis:trans ratio was less than 1 (1.94% of indices in ML1; 
1.62% in ML2), which could suggest broken nuclei.

Before continuing, we combined filtered data from ML1 and ML2 
with equivalently filtered data from secondary experiments (PL1 
and PL2) (Supplementary Table 1 and Supplementary Fig. 5).  
We then employed a conservative genotype filter16, which 
removed 20.4% of human cellular indices (Supplementary Fig. 6),  

leaving us with a combined data set of 3,609 human single-cell Hi-C  
maps. Together with mouse data (which were filtered for cover-
age, cis:trans ratio, and species purity), a total of 8,141 single-cell 
Hi-C maps were generated across these four experiments.

We next explored whether cell types could be separated 
in silico on the basis of single-cell Hi-C signal. We generated 
matrices where rows represent single cells and columns rep-
resent the number of contacts between pairs of chromosomes 
(Supplementary Fig. 7). Principal components analysis (PCA) 
on this matrix resulted in separation of single HeLa S3 and HAP1 
cells (Fig. 2c), which was validated by our programmed barcode 
associations. Principal component 1 (PC1), which strongly cor-
related with coverage (Supplementary Fig. 8), accounted for the 
majority of the variance (52.1%), while the combination of PC1 
and principal component 2 (PC2; 1.07% of the variance) sepa-
rated HeLa S3 and HAP1 cells. We then analyzed the ‘loadings’ 
of our features in PC2, the axis separating HeLa S3 and HAP1 
cells, and found that the strongest loadings recapitulated known 
translocations specific to HAP1 (ref. 17) (namely, translocations 
between chromosomes 15 and 19, and between chromosomes 9  
and 22), while other strong loadings corresponded to docu-
mented HeLa S3 translocations16,18 (Fig. 2d). Repeating these 
analyses by (i) removing specific interactions from the matrices 
and repeating PCA (Supplementary Fig. 9), (ii) using an alter-
nate feature set (interacting 10-Mb intrachromosomal windows; 
Supplementary Figs. 7b and 10), (iii) separating cells by repli-
cate (Supplementary Fig. 11), and (iv) sequencing 908 additional 
human cells (K562 and GM12878; library ML3 containing 1,175 
cells total; Supplementary Fig. 12); all steps recapitulated cell-
type separation to varying degrees, demonstrating that PCA could 
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figure 2 | Cellular indices generated through sciHi-C are overwhelmingly 
species specific and can be separated by cell type. (a) In libraries  
ML1 and ML2, similar levels of collision (defined as any cellular index 
with at least 1,000 unique reads but <95% species purity) are observed, 
and they fall within the expected range. (b) Species contamination 
visualized as a histogram of the fraction of reads mapping to the  
human genome (only cellular indices with ≥ 1,000 reads shown).  
(c) Projection onto the first two principal components from PCA analysis 
of interchromosomal contact matrices results in separation of HeLa 
S3 and HAP1, two karytoypically different cell lines (n = 3,609 cells). 
Percentages shown are the percentage of variance explained by each 
plotted component. (d) Principal component 2 loadings represent  
the contribution of each feature (interchromosomal contact) to the  
observed cell-type separation. Known translocations for each cell type  
are mirrored against the loading heatmap.
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two distinct contact probability maps, shown here for HeLa chromosome 12.  
The labels of both axes indicate chromosomal position.
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potentially be used to separate cell types on the basis of Hi-C  
signal. The ability to separate such populations could be invalu-
able, for example, when studying tissue containing a mixture of 
normal cells and cancerous cells harboring translocations.

We next examined the heterogeneity present in single-cell Hi-C 
maps in terms of polymer conformation. We plotted contact prob-
ability as a function of genomic distance for 769 single cells, each 
with at least 10,000 unique contacts (Supplementary Fig. 13a), 
finding that contact probability values observed for single cells 
were markedly more disperse compared with those calculated 
from a set of shuffled control ‘cells’, regardless of species analyzed. 
We then examined the relationship between single-cell power-
law scaling coefficients (Supplementary Fig. 13b), calculated 
between distances of 50 kb and 8 Mb19,20, and single-cell cis:trans 
ratios, noting a correlation across four out of five experiments 
(Supplementary Fig. 13c and Supplementary Fig. 14) between 
high cis:trans ratios and shallow scaling coefficients.

To test whether this variance was related to the relative cell-cycle 
state of single cells, we arrested HeLa S3 cells using nocadazole, an 
agent that leads to an enrichment of cells arrested at G2–M phase, 
and we performed sciHi-C on this population (library ML4; n = 1,380  
filtered cells). Repeating the above analysis on this data set yielded 
a strikingly wide variance in single-cell contact probability decay 
(Fig. 3a), and subsequent calculation of scaling coefficients 
revealed a clear bimodal distribution in the data (Fig. 3b). We then 
performed in silico ‘sorting’ of this data to decompose the aggre-
gate data set into two distinct contact probability maps (Fig. 3c),  
one harboring the ‘plaid’ compartment pattern expected of  
interphase chromatin, and another harboring the condensed, 
compartment-free patterning of mitotic chromatin previously 
described by Naumova et al.18. As a control, untreated cells were 
processed simultaneously (data not shown). Our demonstration 
of in silico cell sorting, as well as the empirical distributions for 
scaling coefficient in single cycling mouse and human cells, are 
likely to be highly useful in constraining computational models 
of mammalian chromosome conformation.

We have shown that sciHi-C is an effective method for profiling 
chromosome conformation in single cells that relies on combina-
torial cellular indexing for rapid scaling to large numbers of cells. 
As a proof of concept, we applied this method to generate single-
cell Hi-C maps for 10,696 cells with at least 1,000 unique contacts. 
This data set is two orders of magnitude larger than the only pub-
lished single-cell Hi-C data set, with 3,515 filtered cells containing 
more than 10,000 unique contacts, compared with the ten existing 
single-cell maps defined using a similar coverage cutoff.

Given the generally similar workflow of our method and tradi-
tional bulk Hi-C, it may be possible to incorporate sciHi-C into 
routine practice, thus adding a ‘single-cell’ dimension to Hi-C data 
production and a means of obtaining single-cell and bulk meas-
urement at once (the latter generated by summing single cells). 
Furthermore, our demonstration that thousands of single-cell Hi-C 
maps can be generated in a single workflow, without the need to 
isolate each cell, demonstrates the power of combinatorial index-
ing for large-scale single-cell biology. Indeed, as Vitak et al.21 also 

show in this issue, combinatorial indexing is thus generalizable to 
additional aspects of single-cell or even intracellular biology, where 
DNA barcodes can be incorporated in situ.

methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Cell culture. HeLa S3 (CCL2.2) (gift from Malik Lab), primary 
MEFs (gift from Ware Lab), and Patski (gift from Disteche lab) 
cells were cultured at 37 °C, 5% CO2 in DMEM supplemented 
with 1× Pen–Strep (Gibco) and 10% fetal bovine serum (FBS; 
Gibco). HAP1 cells (Haplogen) were cultured at 37 °C, 5% CO2 
in IMDM supplemented with 1× Pen–Strep and 10% FBS. K562 
cells were cultured at 37 °C, 5% CO2 in RPMI-1640 supplemented 
with 1× Pen–Strep and 10% FBS. GM12878 cells were cultured at 
37 °C, 5% CO2 in RPMI-1640 supplemented with 1× Pen–Strep 
and 15% FBS. Cells were not tested for mycoplasma.

Cell fixation. Adherent cells (i.e., HeLa S3, HAP1, Patski, MEF) 
were washed once with 1× PBS (Life Technologies), trypsinized 
(0.25% trypsin–EDTA, Life Technologies), spun down at 500× g 
for 5 min, and resuspended in 20 mL serum-free DMEM (IMDM 
for HAP1). Cells were crosslinked by adding 1.12 mL (2% final 
concentration, for HeLa S3, HAP1, and MEF) or 1.4 mL (2.5% 
final concentration, for Patski) 37% formaldehyde (Alcon) and 
incubated at RT (25 °C) for 10 min, after which crosslinking was 
quenched using 1 mL 2.5 M glycine. Quenched reactions were 
incubated on ice for 15 min, spun down at 800× g for 5 min, resus-
pended in 1× PBS, aliquoted into 10 ×106 cell aliquots, pelleted 
once again at 800× g for 5 min, decanted, snap frozen in liquid 
nitrogen, and finally stored indefinitely at −80 °C.

Suspension cells (i.e., K562 and GM1878) were spun down at 
500× g for 5 min, resuspended in 20 mL serum-free RPMI-1640, 
crosslinked with a final concentration of 2% formaldehyde, and 
processed as above.

For nocadazole-arrest experiments, we plated HeLa S3 cells in 
T75 flasks to ~10% confluency. 24 h later, we replaced media with 
DMEM containing 10% FBS and nocadazole to a final concentra-
tion of 100 ng/mL. We then waited 24 h, then we harvested cells 
by first harvesting detached cells, then trypsinizing the remaining 
plated cells. This resulted in a heterogeneous single-cell suspen-
sion, which we then fixed as above using 2% formaldehyde.

Single-cell combinatorial indexed Hi-C. For the step-by-step 
combinatorial single-cell combinatorial indexed Hi-C (sciHi-
C) protocol, see Supplementary Protocol and the Protocol 
Exchange22. Like the recently published scDNase-seq protocol23, 
sciHi-C uses carrier plasmid to prevent DNA losses during steps 
of the protocol where small amounts of DNA are handled. The 
libraries prepared here each used fixed aliquots of 5 to 10 million 
cells, which are diluted over the course of the protocol.

All oligonucleotide sequences used in this study were obtained 
from IDT Technologies (see Supplementary Data). All libraries 
were sequenced on a HiSeq 2500.

Barcode programming. Our primary data sets (library ML1 and 
biological replicate library ML2) used HeLa S3, HAP1, Patski, and 
MEFs, with subsets of human and mouse cell types in distinct 
wells during the first round of barcoding (HeLa S3 + Patski in half 
of wells; HAP1 + MEFs in half of wells). Our secondary data sets 
(library PL1 and biological replicate PL2) were generated using 
the same cell types but a subtly different programming scheme 
(illustrated in Supplementary Fig. 15), wherein each well con-
tained only a single cell type during the first round of barcoding. 
Finally, we generated and lightly sequenced a fifth library (library 
ML3), mixing the same murine cell types as before with two new 

human cell types—GM12878 and K562—in a similar manner to 
that of sequencing libraries ML1 and ML2 (GM12878 + Patski in 
half of wells; K562 + MEFs in half of wells).

Bridge adaptor barcode design. Bridge adaptor barcodes were 
drawn from randomly generated 8-mers, such that the following 
criteria were met: (i) all adaptors must have a minimum pair-
wise Levenshtein distance of 3; (ii) adaptors must not contain 
the sequences TTAA or AAGCTT; (iii) adaptors must contain 
>60% GC content; (iv) adaptors must not contain homopolymers 
≥ length 3; and (v) adaptors must not be palindromic.

Processing sciHi-C data. All code used for sciHi-C data analy-
sis is available as Supplementary Software and at https://github.
com/VRam142/combinatorialHiC. Below, we describe in detail 
the analytical pipeline used to process the data. The analytical 
steps broadly fall under three categories: (i) barcode identi-
fication and read trimming; (ii) read alignment, read pairing,  
and barcode assocation; and (iii) cellular demultiplexing and 
quality analysis.

Barcode association and read trimming. First, to obtain round 2 
(i.e., terminal) barcodes, we use a custom Python script to iterate 
through both mates, compare the first 8 bases of each read against 
the 96 known barcode sequences, and then assign barcodes to 
each mate using a Levenshtein distance cutoff of 2. Reads ‘split’ 
in this way are output such that the first 11 bases of each read, 
which derive from the custom barcoded Y-adaptors, are removed. 
Mates where either terminal barcode went unidentified, or where 
the terminal barcodes did not match, are discarded.

For each resulting ‘split’ pair of reads, the two reads are then 
scanned using a custom Python script to find the common por-
tion of the bridge adaptor sequence. The 8 bases immediately 5′ 
of this sequence are isolated and compared against the 96 known 
bridge adaptor barcodes, again using a Levenshtein distance cut-
off of 2. There are cases where the entire bridge adaptor, includ-
ing both barcodes flanking the ligation junction, is encountered 
in one mate and not the other. To account for these cases, we 
also isolate the 8 bases flanking the 3′ end of the common bridge 
adaptor sequence (when it is encountered within a read), reverse 
complement it, and compare the resulting 8-mer against the 96 
known bridge adaptor barcodes. Output reads are then clipped to 
remove the bridge adaptor and all 3′ sequence. Barcodes flanking 
the ligation junction should match; again, mates where barcodes 
do not match or where a barcode is not found are discarded.

The result of this processing module are three files: filtered 
reads 1 and 2, and an ‘associations’ file—a tab-delimited file where 
the name of each read passing the above filters and their associ-
ated barcode combination are listed.

Read alignment, read pairing, and barcode association. As is 
standard for Hi-C reads, the resulting processed and filtered reads 1  
and 2 were aligned separately using bowtie2/2.2.3 to a Burrows–
Wheeler index of the concatenated mouse (mm10) and human 
(hg19) genomes. Individual SAM files were then converted to 
BED format and filtered for alignments with MAPQ ≥ 30 using 
a combination of samtools, bedtools, and awk. Using bedtools 
closest along with a BED file of all DpnII sites in both genomes 
(generated using HiC-Pro24), the closest DpnII site to each read 
was determined, after which BED files were concatenated, sorted 
on read ID using UNIX sort, and then processed using a custom 

https://github.com/VRam142/combinatorialHiC
https://github.com/VRam142/combinatorialHiC
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Python script to generate a BEDPE-format file where 5′ mates 
always precede 3′ mates, and where a simple Python dictionary  
is used to associate barcode combinations contained in the ‘asso-
ciations’ file with each pair of reads. Reads were then sorted by 
barcode, read 1 chromosome, start, end, read 2 chromosome, 
start, and end using UNIX sort, and deduplicated using a custom 
Python script on the following criteria: reads were considered to 
be PCR duplicates if they were associated with the same cellu-
lar index and if they comprised a ligation between the same two 
restriction sites as defined using bedtools closest.

Cellular demultiplexing and quality analysis. When demultiplex-
ing cells, we run two custom Python scripts. First, we generate a 
‘percentages’ file that includes the species purity of each cellular 
index, the coverage of each index, and the number of times a 
particular restriction fragment is observed once, twice, thrice, 
and four times. We also include the cis:trans ratio described above, 
and, if applicable, the fraction of homozygous alternate HeLa alle-
les observed. We use these percentages files to filter BEDPE files 
(see below) and generate, at any desired resolution, single-cell 
matrices in long format (i.e., BIN1-BIN2-COUNT), with only 
the ‘upper diagonal’ of the matrix included to reduce storage foot-
print. These matrices are then converted to numpy matrices for 
visualization and further analysis.

Filtration of cellular indices. We applied several filters to our 
resulting cellular indices to arrive at the cells analyzed in this 
study. We first removed all cellular indices with fewer than 1,000 
unique reads. We next filtered out all indices where the cis:trans 
ratio was lower than 1. Finally, for all experiments we removed 
cellular indices where less than 95% of reads aligned uniquely 
to either the mouse (mm10) or human (hg19) genomes. For 
all human cells from HAP1 and HeLa S3 mixing experiments 
(libraries ML1, ML2, PL1, and PL2) further filtration by geno-
type was performed. For each cellular index, we examined all 
reads overlapping with known alternate homozygous sites in the 
HeLa S3 genome and computed the fraction of sites where the 
alternate allele is observed. We then drew cutoffs to filter out all 
cells where this fraction fell between 56% and 99%. We employ 
this filtering step purely as an additional, conservative measure, 
and note that this is not strictly necessary. The clear separation of 
two populations in data derived from library ML4 (nocadazole-
arrest experiment), where no genotype filtration was performed, 
illustrates this.

We do acknowledge that particular applications (e.g., struc-
tural modeling) may require more stringent filtration for cellular 
indices covering single cells. As such, we provide with the raw 
data files specifying the ‘species purity’ of each barcode com-
bination in each sequenced library, along with the number of 
times DpnII restriction fragments are observed in a cell once, 
twice, thrice, or four times, with the expectation that given some 
tolerable noise level, one should only observe restriction frag-
ment copy numbers equal to or less than the copy number of that  
fragment for that cell type. Relatedly, we note that further inspection  

of the HAP1 cells used in this study revealed that they were not 
entirely haploid. HAP1 cells, an engineered haploid line, have 
faster doubling times compared with those of HeLa S3, and have 
been described as having a relatively large frequency of diploid 
cells25. FACS analysis (data not shown) of the stock used for these 
experiments showed that ~40% of cells analyzed harbored 2N 
nucleic acid content, indicating haploid cells in G2 or reverted 
diploid cells in G1.

Data analysis. PCA of sciHi-C data. Single-cell matrices at inter-
chromosomal contact resolution (log10 of contact counts) and  
10 Mb resolution (binarized; 0 if absent, 1 if present) were 
vectorized and concatenated using custom Python scripts. 
Concatenation was performed such that redundant entries of 
each contact matrix (i.e., Cij and Cji) were only represented once. 
Resulting matrices—where rows represent single cells, and col-
umns represent observed contacts—were then decomposed using 
the PCA function in scikit-learn. For interchromosomal matrices, 
entries for intrachromosomal contacts (i.e., the diagonal) were 
set to 0. For 10 Mb intrachromosomal matrices, all interchromo-
somal contacts were ignored and all entries Cij where | i − j | < 3 
were set to zero.

Calculation of contact probabilities in single cells. Methods to 
calculate the scaling probability within single cells were adapted 
from Fudenberg et al.19 and Sanborn et al.20. A histogram of  
contact distances normalized by bin size was generated using 
logarithmically increasing bins (increasing by powers of 1.12n). 
We obtained the scaling coefficient by calculating the line of best 
fit for the log–log plot of this histogram between distances of  
50 kb and 8 Mb. Shuffled controls were generated by randomly 
reassigning all cellular indices and repeating the above analysis; 
this importantly maintained the coverage distribution of the new 
set of simulated ‘single cells’.

All plots were generated in R using ggplot2 (http://ggplot2.org/).

Statistics and reproducibility. No sample sizes were predeter-
mined in this study. No P values were calculated during this study. 
All replicates in this study are defined as separate experiments, 
each carried out using unique starting material (i.e., separate aliq-
uots of fixed cells).

Data availability statement. Raw data containing reads derived 
from HeLa cells are deposited at dbGaP under accession number 
phs000640.v4.p1. All processed data and raw reads not containing 
HeLa data are available at GEO accession GSE84920. 
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Erratum: Massively multiplex single-cell Hi-C
Vijay Ramani, Xinxian Deng, Ruolan Qiu, Kevin L Gunderson, Frank J Steemers, Christine M Disteche, William S Noble,  
Zhijun Duan & Jay Shendure
Nat. Methods; doi:10.1038/nmeth.4155; corrected online 10 February 2017

In the version of this article initially published online, the Gene Expression Omnibus (GEO) accession containing all processed data and 
raw reads (except for HeLa data) was not provided; the correct accession, GSE84920, has now been included. The error has been corrected 
for the print, PDF and HTML versions of this article as of 10 February 2017. 
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